Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155.589
Filtrar
1.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710561

RESUMEN

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Asunto(s)
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacología , Glucanos/aislamiento & purificación , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Agaricales/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Peso Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Basidiomycota/química , Supervivencia Celular/efectos de los fármacos
2.
Carbohydr Polym ; 337: 122159, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710574

RESUMEN

Chitosan and chitosan derivatives can kill pathogenic microorganisms including bacteria and fungi. The antimicrobial activity is dependent on the degree of acetylation, substituent structure, and molecular weight. Over the past four decades, numerous studies have endeavored to elucidate the relationship between molecular weight and the activity against microorganisms. However, investigators have reported divergent and, at times, conflicting conclusions. Here a bilinear equation is proposed, delineating the relationship between antimicrobial activity, defined as log (1/MIC), and the molecular weight of chitosan and chitosan derivatives. Three constants AMin, AMax, and CMW govern the shape of the curve determined by the equation. The constant AMin denotes the minimal activity expected as the molecular weight tends towards zero while AMax represents the maximal activity observed for molecular weights exceeding CMW, the critical molecular weight required for max activity. This equation was applied to analyze data from seven studies conducted between 1984 and 2019, which reported MIC (Minimum Inhibitory Concentration) values against bacteria and fungi for various molecular weights of chitosan and its derivatives. All the 29 datasets exhibited a good fit (R2 ≥ 0.5) and half excellent (R2 ≥ 0.95) fit to the equation. The CMW generally ranged from 4 to 10 KD for datasets with an excellent fit to the equation.


Asunto(s)
Bacterias , Quitosano , Hongos , Pruebas de Sensibilidad Microbiana , Peso Molecular , Quitosano/química , Quitosano/farmacología , Hongos/efectos de los fármacos , Bacterias/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Antifúngicos/química , Polímeros/química , Polímeros/farmacología
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(5): 608-614, 2024 May 06.
Artículo en Chino | MEDLINE | ID: mdl-38715499

RESUMEN

Atmospheric particulate matter has an association with respiratory system inflammation, and low molecular weight hyaluronic acid (LMW-HA) is a key biomarker of inflammatory cascade reaction. This review summarized the possible pathways and biomarkers of atmospheric particulate matter causing respiratory system inflammation through high molecular weight hyaluronic acid (HMW-HA)/LMW-HA imbalance, including the synthesis and decomposition of HA, the reduction of particulate matter and HMW-HA, the increase of LMW-HA, and the relationship between LMW-HA and respiratory system inflammation. Furthermore, inhibitors and therapeutic drugs targeting certain biomarkers were further listed. This review could shed light on the mechanism of respiratory system inflammation caused by atmospheric particulate matter and the weak points that need attention in subsequent research.


Asunto(s)
Ácido Hialurónico , Inflamación , Material Particulado , Material Particulado/efectos adversos , Humanos , Peso Molecular , Biomarcadores , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/toxicidad
4.
Mol Pain ; 20: 17448069241254455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728068

RESUMEN

Pruritis, the sensation of itch, is produced by multiple substances, exogenous and endogenous, that sensitizes specialized sensory neurons (pruriceptors and pruri-nociceptors). Unfortunately, many patients with acute and chronic pruritis obtain only partial relief when treated with currently available treatment modalities. We recently demonstrated that the topical application of high molecular weight hyaluronan (HMWH), when combined with vehicles containing transdermal transport enhancers, produce potent long-lasting reversal of nociceptor sensitization associated with inflammatory and neuropathic pain. In the present experiments we tested the hypothesis that the topical formulation of HMWH with protamine, a transdermal transport enhancer, can also attenuate pruritis. We report that this topical formulation of HMWH markedly attenuates scratching behavior at the nape of the neck induced by serotonin (5-hydroxytryptamine, 5-HT), in male and female rats. Our results support the hypothesis that topical HMWH in a transdermal transport enhancer vehicle is a strong anti-pruritic.


Asunto(s)
Administración Cutánea , Ácido Hialurónico , Protaminas , Ratas Sprague-Dawley , Animales , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Masculino , Femenino , Ratas , Protaminas/farmacología , Peso Molecular , Serotonina/metabolismo , Administración Tópica
5.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38563431

RESUMEN

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Asunto(s)
Microbiota , Tenebrio , Animales , Tenebrio/metabolismo , Tenebrio/microbiología , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental
6.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611875

RESUMEN

Mamey (Mammea americana L.) is a tropical fleshy fruit native from the West Indies and northern South America. It is very appreciated for its flavor and color but has been little described. The present study investigates the composition and histochemistry of the pulp cell walls of three mamey accessions readily available in Martinique. The impact of pulp processing into puree on cell wall composition is evaluated. The histology and rheology of mamey puree are assessed considering these characterizations. Mamey pulp cell wall composition is dominated by highly methyl-esterified pectins (DM: 66.2-76.7%) of high molecular weight, and show few hemicelluloses, mainly xyloglucans. Processing reduced methyl-esterified uronic acid contents and gave purees with significantly different viscosities. Mamey puree was composed of polydisperse particles (20-2343 µm), which size distributions were different depending on the accession: Ti Jacques was dominated by smaller particles (50% had approximated diameters lower than 160 µm), Sonson's by larger particles (50% had approximated diameters higher than 900 µm), and Galion's had an intermediate profile. This new knowledge on mamey pulp is valuable for future works on mamey processing into new food products, even more so for those including cell wall polysaccharide-degrading enzymes.


Asunto(s)
Mammea , Pared Celular , Alimentos , Histocitoquímica , Peso Molecular
7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1186-1195, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621965

RESUMEN

Polysaccharides from medicinal plant resources are a kind of polymers extracted from medicinal plants. They are complex long chains formed by different monosaccharides connected via glucosidic bonds. These polysaccharides usually have straight chain and branched chain structures, and their relative molecular weight changes greatly. Modern studies have shown that the biological activi-ty of polysaccharides from medicinal plant resources is closely related to their relative molecular weight. This paper first reviewed the preparation and detection methods of polysaccharides from medicinal plant resources with different relative molecular weights. Then, the paper summarized and analyzed the general experience of the correlation between efficacy and relative molecular weight of polysaccharides from medicinal plant resources with different molecular weights. It was considered that polysaccharides with large relative molecular weights(>100 kDa) play a leading role in immune regulation. Polysaccharides with medium relative molecular weights(10-100 kDa) play a leading role in immune regulation and the protection of the liver. Polysaccharides with small relative molecular weights(<10 kDa) play a leading role in anti-oxidation, regulation of intestinal flora, regulation of blood glucose and lipids, anti-fatigue, and the protection of nerves. Therefore, precise development of polysaccharides from medicinal plant resources based on relative molecular weight is expected to improve their biological activity and application value.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/química , Peso Molecular , Polisacáridos/química , Monosacáridos/química
8.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610380

RESUMEN

Environmental monitoring and the detection of antibiotic contaminants require expensive and time-consuming techniques. To overcome these challenges, gold nanoparticle-mediated fluorometric "turn-on" detection of Polymyxin B (PMB) in an aqueous medium was undertaken. The molecular weight of polyethyleneimine (PEI)-dependent physicochemical tuning of gold nanoparticles (PEI@AuNPs) was achieved and employed for the same. The three variable molecular weights of branched polyethyleneimine (MW 750, 60, and 1.3 kDa) molecules controlled the nano-geometry of the gold nanoparticles along with enhanced stabilization at room temperature. The synthesized gold nanoparticles were characterized through various advanced techniques. The results revealed that polyethyleneimine-stabilized gold nanoparticles (PEI@AuNP-1-3) were 4.5, 7.0, and 52.5 nm in size with spherical shapes, and the zeta potential values were 29.9, 22.5, and 16.6 mV, respectively. Accordingly, the PEI@AuNPs probes demonstrated high sensitivity and selectivity, with a linear relationship curve over a concentration range of 1-6 µM for polymyxin B. The limit of detection (LOD) was calculated as 8.5 nM. This is the first unique report of gold nanoparticle nano-geometry-dependent FRET-based turn-on detection of PMB in an aqueous medium. We believe that this approach would offer a complementary strategy for the development of a highly sophisticated and advanced sensing system for PMB and act as a template for the development of new nanomaterial-based engineered sensors for rapid antibiotic detection in environmental as well as biological samples.


Asunto(s)
Nanopartículas del Metal , Polimixina B , Oro , Peso Molecular , Polietileneimina , Transferencia Resonante de Energía de Fluorescencia , Antibacterianos
9.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612773

RESUMEN

The aim of the present study was to determine the ACE inhibitory activity of aqueous extracts of olive pomace and to understand whether they represent a good source of bioactive LMW peptides for nutritional and pharmacological applications. We produced a water extract from olive pomace (var. Picual) and obtained its low molecular weight (LMW) fraction (<3 kDa). The calculated yield of extraction was 100.2 ± 7.9 mg of LMW peptides per 100 g of olive pomace. The olive pomace LMW fraction possessed strong ACE inhibitory activity (IC50 = 3.57 ± 0.22 µg prot/mL). The LMW fraction (<3 kDa) was analysed by nanoscale liquid chromatography-Orbitrap coupled with tandem mass spectrometry and de novo sequencing. Thirty new peptides, containing between 7-17 amino acids and molecular masses ranging 778-1354 Da, were identified by the Peaks database algorithm using the available Olea europaea (cv. Farga) genome database. Ten new peptides were also identified by Peaks de novo sequencing. The protein sources of twelve peptides detected in the database by Peaks DB were identified by BLAST search. The ACE inhibitory activity of the identified peptides was predicted by BIOPEP software. We conclude that olive pomace possesses ACE inhibitory activity and contains low molecular weight peptides with (predicted) biological activity. Olive pomace may represent a good source of peptides for nutritional and pharmaceutical applications. In our study, it has been shown that olive pomace possesses ACE inhibitory activity and contains low molecular weight peptides with (predicted) biological activity. Olive pomace may represent a good source of peptides for nutritional and pharmaceutical applications. More research is needed in order to identify the in vivo effects of olive pomace bioactive peptides.


Asunto(s)
Olea , Péptidos , Peso Molecular , Péptidos/farmacología , Algoritmos , Aminoácidos , Delgadez , Agua , Preparaciones Farmacéuticas
10.
J Hazard Mater ; 470: 134304, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615650

RESUMEN

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Asunto(s)
Benzopiranos , Chlorella vulgaris , Cromo , Microalgas , Peso Molecular , Contaminantes Químicos del Agua , Cromo/metabolismo , Cromo/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Microalgas/metabolismo , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Benzopiranos/química , Benzopiranos/metabolismo
11.
Methods Mol Biol ; 2788: 49-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656508

RESUMEN

Calibrated size exclusion chromatography (SEC) is a useful tool for the analysis of molecular dimensions of polysaccharides. The calibration takes place with a set of narrow distributed dextran standards and peak position technique. Adapted columns systems and dissolving processes enable for the adequate separation of carbohydrate polymers. Plant-extracted fructan (a homopolymer with low molar mass and excellent water solubility) and mucilage (differently structured, high molar mass heteropolysaccarides that include existing supramolecular structures, and require a long dissolving time) are presented as examples of the versatility of this technique. Since narrow standards similar to the samples (chemically and structurally) are often unavailable, it must be noted that the obtained molar mass values and distributions by this method are only apparent (relative) values, expressed as dextran equivalents.


Asunto(s)
Cromatografía en Gel , Peso Molecular , Polisacáridos , Cromatografía en Gel/métodos , Polisacáridos/química , Polisacáridos/análisis , Dextranos/química , Fructanos/química , Fructanos/análisis , Calibración
12.
Biotechnol J ; 19(4): e2300614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581093

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.


Asunto(s)
Bacillus subtilis , Ácido Glutámico , Ácido Poliglutámico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutámico/metabolismo , Peso Molecular , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Genómica , Fermentación
13.
Skin Res Technol ; 30(4): e13672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591218

RESUMEN

BACKGROUND: Hyaluronic acid (HA) is a widely used active cosmetic ingredient. Its multiple skin care benefits are modulated by its molecular weight. Low molecular weight (LMW) HA can penetrate the skin, but high molecular weight (HMW) HA remains at the surface. Here, we assessed how vectorization of HMW HA with bentonite clay-achieved with an innovative technology-enhances its cosmetic and hydrating properties. MATERIALS AND METHODS: The two HA forms were applied to skin explants; their penetration and smoothing effects were monitored by Raman spectroscopy and scanning electron microscopy. The two forms were biochemically characterised by chromatography, enzyme sensitivity assays, and analysis of Zeta potential. Cosmetics benefits such as, the smoothing effect of vectorised-HA was assessed in ex vivo experiments on skin explants. A placebo-controlled clinical study was finally conducted applying treatments for 28 days to analyse the final benefits in crow's feet area. RESULTS: Raman spectroscopy analysis revealed native HMW HA to accumulate at the surface of skin explants, whereas vectorised HMW HA was detected in deeper skin layers. This innovative vectorisation process changed the zeta potential of vectorised HMW HA, being then more anionic and negative without impacting the biochemical structure of native HA. In terms of cosmetic benefits, following application of vectorised HMW HA ex vivo, the skin's surface was visibly smoother. This smoothing was clinically confirmed, with a significant reduction in fine lines. CONCLUSION: The development of innovative process vectorising HMW HA allowed HMW HA penetration in the skin. This enhanced penetration extends the clinical benefits of this iconic cosmetic ingredient.


Asunto(s)
Ácido Hialurónico , Envejecimiento de la Piel , Humanos , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Arcilla , Peso Molecular , Piel
14.
Int J Biol Macromol ; 267(Pt 1): 131162, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574931

RESUMEN

We developed an efficient mixed-strain co-fermentation method to increase the yield of quinoa ß-glucan (Q+). Using a 1:1 mass ratio of highly active dry yeast and Streptococcus thermophilus, solid-to-liquid ratio of 1:12 (g/mL), inoculum size of 3.8 % (mass fraction), fermentation at 32 °C for 27 h, we achieved the highest ß-glucan yield of (11.13 ± 0.80)%, representing remarkable 100.18 % increase in yield compared to quinoa ß-glucan(Q-) extracted using hot water. The structure of Q+ and Q- were confirmed through Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies. Q+ contained 41.66 % ß-glucan, 3.93 % protein, 2.12 % uronic acid; Q- contained 37.21 % ß-glucan, 11.49 % protein, and 1.73 % uronic acid. The average molecular weight of Q+(75.37 kDa) was lower than that of Q- (94.47 kDa). Both Q+ and Q- promote RAW264.7 cell proliferation without displaying toxicity. They stimulate RAW264.7 cells through the NF-κB and MAPK signaling pathways, primarily inducing NO and pro-inflammatory cytokines by upregulating CD40 expression. Notably, Q+ exhibited stronger immunostimulatory activity compared to Q-. In summary, the fermentation enrichment method yields higher content of quinoa ß-glucan with increased purity and stronger immunostimulatory properties. Further study of its bioimmunological activity and structure-activity relationship may contribute to the development of new immunostimulants.


Asunto(s)
Chenopodium quinoa , Fermentación , beta-Glucanos , Chenopodium quinoa/química , Ratones , beta-Glucanos/química , beta-Glucanos/farmacología , beta-Glucanos/aislamiento & purificación , Animales , Células RAW 264.7 , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Proliferación Celular/efectos de los fármacos , Peso Molecular , Streptococcus thermophilus/química
15.
Mar Pollut Bull ; 202: 116333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579446

RESUMEN

The temporal and spatial variations of 16 Polycyclic Aromatic Hydrocarbons (PAHs) were examined at multiple sites around Lake Balaton from February 2023 to January 2024. The results indicated that the concentrations of PAHs in sediment were high during the winter months, 448.35 to 619.77 ng/g dry weight, and low during the summer months, 257.21 to 465.49 ng/g dry weight. The concentration of high molecular weight PAHs (HMWPAHs), consisting of 5-6 rings, was greater than that of low molecular weight PAHs (LMWPAHs), which had 2-3 rings. The total incremental lifetime cancer risk (ILCR) for both dermal and ingestion pathways was high for both adults and children during the four seasons, with the highest records as the following: winter > spring > summer > autumn. The ecological effects of the 16 PAHs were negligible except for acenaphthylene (Acy) and fluorene (Fl), which displayed slightly higher concentrations during the autumn and spring, respectively.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Hidrocarburos Policíclicos Aromáticos , Estaciones del Año , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Lagos/química , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Peso Molecular , Humanos
16.
Int J Biol Macromol ; 267(Pt 1): 131369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580026

RESUMEN

Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.


Asunto(s)
Antioxidantes , Quitosano , Nanopartículas , Ácido Poliglutámico , Ácido Poliglutámico/análogos & derivados , Polisacáridos , Quercetina , Pez Cebra , Zeína , Quercetina/farmacología , Quercetina/química , Quitosano/química , Animales , Polisacáridos/química , Polisacáridos/farmacología , Zeína/química , Nanopartículas/química , Ratas , Ácido Poliglutámico/química , Ácido Poliglutámico/farmacología , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Inflamación/tratamiento farmacológico , Inflamación/patología , Peso Molecular , Portadores de Fármacos/química , Tamaño de la Partícula , Vasos Sanguíneos/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Masculino , Nanopartículas Capa por Capa
17.
Int J Biol Macromol ; 267(Pt 1): 131278, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582459

RESUMEN

Four modified hawthorn pectin fractions (MHPs), named MHP-30, MHP-50, MHP-70 and MHP-90, were obtained by ultrasonic-assisted pectin methyl esterase modification and gradient ethanol precipitation. The results indicated that all four MHPs were composed of galacturonic acid, galactose, xylose, arabinose, glucose and mannose in different proportions. With the increase of the ethanol concentration, the molecular weight, esterification degree and galacturonic acid content of MHPs all decreased, whereas the arabinose content and branching degree increased. The structural characterization from XRD, SEM, and FT-IR showed that four MHPs exhibited amorphous structure, similar functional groups, diverse surface morphologies. Besides, in vitro antioxidant assays confirmed that MHP-70 and MHP-90 exhibited stronger total antioxidant activities than MHP-30 and MHP-50. The results of simulated saliva-gastrointestinal digestion showed that the molecular weight of MHP-70 and MHP-90 remained stable, yielded small amounts of reducing sugars, and were resistant to digestion in the human upper digestive tract. Overall, MHP-70 and MHP-90 shown great potential as novel natural antioxidants, which are expected to be good carbon sources for the utilization of intestinal microorganisms.


Asunto(s)
Antioxidantes , Crataegus , Etanol , Pectinas , Pectinas/química , Pectinas/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Etanol/química , Crataegus/química , Digestión , Peso Molecular , Humanos , Precipitación Química , Espectroscopía Infrarroja por Transformada de Fourier
18.
Int J Biol Macromol ; 267(Pt 1): 131396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582468

RESUMEN

In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 â†’ 4)-Glcp-(1 â†’ 2)-Glcp-(1 â†’ 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 â†’ 6)-Manp-(1 â†’ 3)-Glcp-(1 â†’ 6)-Glcp-(1 â†’ 2)-Manp-(1 â†’ 6)-Glcp-(1 â†’ 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.


Asunto(s)
Antioxidantes , Peso Molecular , Polisacáridos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Monosacáridos/análisis , Monosacáridos/química , Metilación
19.
Int J Biol Macromol ; 267(Pt 1): 131419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583831

RESUMEN

The booming mushroom industry envisages economic merits, and massive unutilized waste production (∼ 20 %) creates an opportunity for valorization. Chitosan, a bioactive polysaccharide, has drawn immense attention for its invaluable therapeutic potential. Thus, the present study was conducted to extract chitosan from mushroom waste (MCH) for its prebiotic potential. The structural characterization of MCH was carried out using NMR, FTIR, and XRD. The CP/MAS-13CNMR spectrum of MCH appeared at δ 57.67 (C2), 61.19 (C6), 75.39 (C3/C5), 83.53 (C4), 105.13 (C1), 23.69 (CH3), and 174.19 (C = O) ppm. The FTIR showed characteristic peaks at 3361 cm-1, 1582 cm-1, and 1262 cm-1 attributed to -NH stretching, amide II, and amide III bands of MCH. XRD interpretation of MCH exhibited a single strong reflection at 2θ =20.19, which may correspond to the "form-II" polymorph. The extracted MCH (∼ 47 kDa) exhibited varying degrees of deacetylation from 79 to 84 %. The prebiotic activity score of 0.73 to 0.82 was observed for MCH (1 %) when supplemented with probiotic strains (Lactobacillus casei, L. helveticus, L. plantarum, and L. rhamnosus). MCH enhanced the growth of Lactobacillus strains and SCFA's levels, particularly in L. rhamnosus. The MCH also inhibited the growth of pathogenic strains (MIC of 0.125 and 0.25 mg/mL against E. coli and S. aureus, respectively) and enhanced the adhesion efficiency of probiotics (3 to 8 % at 1 % MCH supplementation). L. rhamnosus efficiency was higher against pathogens in the presence of MCH, as indicated by anti-adhesion assays. These findings suggested that extracted polysaccharides from mushroom waste can be used as a prebiotic for ameliorating intestinal dysbiosis.


Asunto(s)
Quitosano , Peso Molecular , Pleurotus , Prebióticos , Pleurotus/química , Quitosano/química , Quitosano/farmacología , Residuos/análisis
20.
Int J Biol Macromol ; 267(Pt 1): 131377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583850

RESUMEN

Kombucha is prepared by fermenting sugared green or black tea with a symbiotic culture of bacteria and yeast (SCOBY). Some of the bacteria within the SCOBY are known to form exopolysaccharides (EPS) from sucrose. However, it is yet unknown whether water-soluble EPS are formed in kombucha, and if so, which specific EPS are present. Therefore, different kombucha samples were prepared by fermentation of green and black tea with SCOBYs from different manufacturers. Subsequently, the EPS were isolated and characterized by using various chromatographic methods, partial enzymatic hydrolyses and NMR spectroscopy. It was demonstrated that levans with a varying degree of branching at position O1 (4.3-7.9 %) are present, while only trace amounts of glucans were detected. Furthermore, levans isolated from kombucha had a comparably low molecular weight and the content of levan within the kombucha samples varied from 33 to 562 mg levan/L kombucha. Therefore, our study demonstrated that levans are the main EPS type in kombucha and that levan amounts and structures varied when different starter cultures and ingredients were used. Furthermore, we provide a comprehensive data set on the structural variability of levans from kombucha.


Asunto(s)
Fermentación , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/aislamiento & purificación , Peso Molecular , Té de Kombucha/microbiología , Fructanos/química , Fructanos/aislamiento & purificación , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA